Ca2+ Diffusion through Endoplasmic Reticulum Supports Elevated Intraterminal Ca2+ Levels Needed to Sustain Synaptic Release from Rods in Darkness.
نویسندگان
چکیده
UNLABELLED In addition to vesicle release at synaptic ribbons, rod photoreceptors are capable of substantial slow release at non-ribbon release sites triggered by Ca(2+)-induced Ca(2+) release (CICR) from intracellular stores. To maintain CICR as rods remain depolarized in darkness, we hypothesized that Ca(2+) released into the cytoplasm from terminal endoplasmic reticulum (ER) can be replenished continuously by ions diffusing within the ER from the soma. We measured [Ca(2+)] changes in cytoplasm and ER of rods from Ambystoma tigrinum retina using various dyes. ER [Ca(2+)] changes were measured by loading ER with fluo-5N and then washing dye from the cytoplasm with a dye-free patch pipette solution. Small dye molecules diffused within ER between soma and terminal showing a single continuous ER compartment. Depolarization of rods to -40 mV depleted Ca(2+) from terminal ER, followed by a decline in somatic ER [Ca(2+)]. Local activation of ryanodine receptors in terminals with a spatially confined puff of ryanodine caused a decline in terminal ER [Ca(2+)], followed by a secondary decrease in somatic ER. Localized photolytic uncaging of Ca(2+) from o-nitrophenyl-EGTA in somatic ER caused an abrupt Ca(2+) increase in somatic ER, followed by a slower Ca(2+) increase in terminal ER. These data suggest that, during maintained depolarization, a soma-to-terminal [Ca(2+)] gradient develops within the ER that promotes diffusion of Ca(2+) ions to resupply intraterminal ER Ca(2+) stores and thus sustain CICR-mediated synaptic release. The ability of Ca(2+) to move freely through the ER may also promote bidirectional communication of Ca(2+) changes between soma and terminal. SIGNIFICANCE STATEMENT Vertebrate rod and cone photoreceptors both release vesicles at synaptic ribbons, but rods also exhibit substantial slow release at non-ribbon sites triggered by Ca(2+)-induced Ca(2+) release (CICR). Blocking CICR inhibits >50% of release from rods in darkness. How do rods maintain sufficiently high [Ca(2+)] in terminal endoplasmic reticulum (ER) to support sustained CICR-driven synaptic transmission? We show that maintained depolarization creates a [Ca(2+)] gradient within the rod ER lumen that promotes soma-to-terminal diffusion of Ca(2+) to replenish intraterminal ER stores. This mechanism allows CICR-triggered synaptic release to be sustained indefinitely while rods remain depolarized in darkness. Free diffusion of Ca(2+) within the ER may also communicate synaptic Ca(2+) changes back to the soma to influence other critical cell processes.
منابع مشابه
Synaptic Ca2+ in darkness is lower in rods than cones, causing slower tonic release of vesicles.
Rod and cone photoreceptors use specialized biochemistry to generate light responses that differ in their sensitivity and kinetics. However, it is unclear whether there are also synaptic differences that affect the transmission of visual information. Here, we report that in the dark, rods tonically release synaptic vesicles at a much slower rate than cones, as measured by the release of the flu...
متن کاملThe multiple functions of cysteine-string protein analyzed at Drosophila nerve terminals.
The synaptic vesicle-associated cysteine-string protein (CSP) is important for synaptic transmission. Previous studies revealed multiple defects at neuromuscular junctions (NMJs) of csp null-mutant Drosophila, but whether these defects are independent of each other or mechanistically linked through J domain mediated-interactions with heat-shock cognate protein 70 (Hsc70) has not been establishe...
متن کاملCa2+-induced Ca2+ release in Aplysia bag cell neurons requires interaction between mitochondrial and endoplasmic reticulum stores.
Intracellular Ca2+ is influenced by both Ca2+ influx and release. We examined intracellular Ca2+ following action potential firing in the bag cell neurons of Aplysia californica. Following brief synaptic input, these neuroendocrine cells undergo an afterdischarge, resulting in elevated Ca2+ and the secretion of neuropeptides to initiate reproduction. Cultured bag cell neurons were injected with...
متن کاملPlasmalemmal Na+/Ca2+ exchanger modulates Ca2+-dependent exocytotic release of glutamate from rat cortical astrocytes
Astroglial excitability operates through increases in Ca2+cyt (cytosolic Ca2+), which can lead to glutamatergic gliotransmission. In parallel fluctuations in astrocytic Na+cyt (cytosolic Na+) control metabolic neuronal-glial signalling, most notably through stimulation of lactate production, which on release from astrocytes can be taken up and utilized by nearby neurons, a process referred to a...
متن کاملNeuronal calcium signaling, mitochondrial dysfunction, and Alzheimer's disease.
Alzheimer's disease (AD) is the most common neurodegenerative disorder among the aged worldwide. AD is characterized by extensive synaptic and neuronal loss that leads to impaired memory and cognitive decline. The cause of AD is not completely understood and no effective therapy has been developed. The accumulation of toxic amyloid-beta42 (Abeta42) peptide oligomers and aggregates in AD brain h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 35 32 شماره
صفحات -
تاریخ انتشار 2015